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Sleep is defined as the state of natural rest 
observed throughout the animal kingdom, in all 
mammals and birds, and in many reptiles, 
amphibians, and fish.(1) Regular sleep is necessary 
for survival as well as arousal from sleep.  

CLASSIFICATION 
According to the American Academy of Sleep 
Medicine (AASM) International Classification of 
Sleep Disorders: Diagnostic and Coding Manual, 
Second Edition, there have been more than 70 sleep 
disorders, that can be managed effectively once 
they are correctly diagnosed.(2) Primary sleep 
disorders are presumed to be due to disturbance 
in sleep-wake generating or timing mechanisms.  
They are further subdivided into parasomnias and 
dyssomnias. Parasomnias are characterized by 
abnormal behavioral or physiological events in 
association with sleep, sleep stages, or sleep-wake 
transitions, rather than increased or decreased 
sleep. Parasomnias include nightmare disorder, 
sleep terror disorder, and sleepwalking disorder. 
Dyssomnias are characterized by abnormalities in 
the amount, quality, or timing of sleep. These 
include primary insomnia and hypersomnia, 
narcolepsy, breathing-related sleep disorder (i.e., 
sleep apnea), and circadian rhythm sleep disorder.  

This article provides an overview of relationship 
of sleep and body systems.  

CONTROL OF SLEEP 
During the past decade, there has been 
tremendous progress in our understanding of the 
neural regulation of wakefulness and sleep.  They 
are generated by a complex interaction of 
endogenous circadian and sleep homeostatic 
processes, as well as social and environmental 
factors.(3-4) In mammals, the suprachiasmatic 
nuclei in the hypothalamus are the site of a master 
circadian clock.(5-8) The suprachiasmatic nuclei 
generate circadian rhythms and maintain the 
temporal organization of circadian rhythms to the 
external physical, social, and work schedules.  In 
humans, light is the strongest synchronizing agent 
for the circadian clock,(9)  and its ability to advance 
or delay circadian rhythms depends on the time of 
light exposure. In addition to light, nonphotic 
agents, such as melatonin or physical and social 
activity, also play a role in entrainment of human 
circadian rhythms.(10-11) The phase shifting 
responses to melatonin are generally in the 
opposite direction of light exposure.(12-14) The 
primary role of the circadian pacemaker is to 
promote wakefulness during the day, and 
facilitate the consolidation of sleep during the 
nighttime hours.  The interaction between 
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circadian and homeostatic processes typically 
allows for approximately 16 h of wakefulness and 
8 h of sleep.(15-19) 

GENETICS AND SLEEP 
There has been interesting and exciting 
advancements observed in identification of genetic 
predispositions to a variety of sleep disorders in 
the past several years.(20) One of the interesting 
discoveries is the role of hypocretin/orexin 
deficiency in narcolepsy. The most prominent 
allele associated with the development of 
narcolepsy is DQB1*0602.(21,22) Several studies 
have looked at the genetic influences on 
Obstructive Sleep Apnea Syndrome.  Clinically, 
there appear to be numerous familial forms of 
sleep apnea.  It would be unlikely a single genetic 
predisposition could be found.  However, these 
studies have been hindered by the fact that many 
of the risk factors are also familial or genetically 
determined, such as obesity and craniofacial 
abnormalities. No monozygotic twin studies have 
been successfully completed in the OSA 
syndrome.(23,24)  There is an intriguing association 
between the risk for cardiovascular disease and 
OSA appears to be associated with the 
haptoglobin polymorphism.  The study showed 
that patients with OSA and cardiovascular disease 
had a different pattern of haptoglobin phenotype 
than patients with OSA but without 
cardiovascular disease. This suggests that 
haptoglobin genotype may play a role in 
determining risk for cardiovascular disease and 
sleep apnea syndrome.(25) A strong genetic 
predisposition of restless leg syndrome has been 
suggested by Winkelmann et al, therefore, 
attention has been paid to genes that code for CNS 
dopamine transmission.  However, an exact gene 
that has a high correlation with restless leg 
syndrome has not been identified.(26-28) 

IMMUNE SYSTEM AND SLEEP 
It has been observed for many years that patients 
with acute viral or bacterial infections feel 
excessively sleepy.  The most widely studied 
inflammatory parameters associated with sleep 
and sleep deprivation are IL-1β and TNF-α.  

However, other work has identified possible roles 
of other cytokines in sleep. For example, increased 
levels of IL-6 are associated with increased sleep, 
IL-4 tend to suppress sleep, and IL-10 appears to 
inhibit IL-1β and TNF-α.(29-34) The mechanism of 
sleep enhancement from viral and bacterial 
infections is different.  In viral infections, it seems 
to be related to viral induction of cytokines such as 
IL-1 and interferon.  Gram-positive bacteria are 
associated with enhanced production of muramyl 
peptides, probably through a mechanism of 
promoting IL-1 and TNF.  Gram-negative bacteria 
are associated with production of endotoxin and 
lipopolysaccharide.(35-36) CRP has been linked as a 
risk factor for cardiovascular disease.  CRP has 
been shown to be increased in OSA in several 
studies.  However, CRP is also increased in 
obesity, and it is not clear whether obesity or 
sleep-disordered breathing is the predominant 
factor in producing increases in inflammatory 
markers. IL-6 and TNF-α have been increased in 
patients with OSA.  This could be related to the 
cellular injury from hypoxia and reoxygenation.   
Several studies have shown that treatment of 
patients with OSA resulted in a reduction in these 
inflammatory markers.  These are preliminary 
data at this point in time.(37-40) 

ENDOCRINE SYSTEM AND SLEEP 
Changes in hormone levels throughout the 24-h 
day are related either to circadian rhythms, sleep 
itself, or both.  Takahashi and colleagues 
determined that an obvious peak level of GH 
occurred about 70 min after the initiation of sleep.  
This increase in GH lasted from 1.5 to 3.5 h.  They 
also stated that delay in sleep was linked to a 
delay in GH peak.  Subsequent work reveals that 
there are sex differences in the sleep-related 
secretion of GH.  Van Cauter and colleagues noted 
that between 60 and 70% of GH secretion occurs at 
sleep initiation in men.  They stated that more 
numerous daytime pulses of GH occur in women 
and that, perhaps, less than 50% of GH secretion 
occurs at the beginning of sleep.  Recent studies in 
elderly men and women demonstrate that, with 
age, there are changes in the relationship of GH 
and sleep. Latta and colleagues determined that 
elderly women (but not men) manifested a 
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presleep increase in GH that correlated, not only 
with subsequent attenuation of sleep-related GH, 
but also with increased sleep fragmentation.(41-45) 
Roxburgh and Collis, in late 1800, linked the 
relationship between sleep-disordered breathing 
and excessive GH.  More recent studies 
demonstrate a high prevalence of sleep-disordered 
breathing, snoring, and excessive daytime 
sleepiness in acromegaly.(46,47) Several studies 
demonstrated that the highest TSH levels occurred 
between 9 pm and 6 am and the lowest between 10 
am and 7 pm. Interestingly, level of TSH did not 
associate with T4 or T3 levels.(48,49) Both 
hypothyroidism and hyperthyroidism can cause or 
exacerbate sleep disorders, such as OSAS, 
insomnia, excessive daytime sleepiness and 
restless legs syndrome (RLS).  Two situations 
would strongly suggest the performance of 
thyroid testing: (1) patients manifesting symptoms 
and/or signs of hypothyroidism and (2) women 
over age 60 years.(50) The peak levels of cortisol 
secretion occur at approximately 9 am. A slow 
decline in cortisol levels ensues with a nadir 
during sleep. The lowest levels for cortisol levels 
are noted at approximately 12 am. Cortisol levels 
begin to rise prior to awakening.(51,52) Both 
mineralocorticoid and glucocorticoid receptors 
exist.  Stimulation of these receptors has different 
sleep results. Low-dose steroids would be more 
apt to stimulate mineralocorticoid, with increases 
in SWS. Higher doses of glucocorticoids produce a 
glucocorticoid effect, with increases in wake time 
and light sleep.(51) Altered Luteinizing hormone 
(LH) and testosterone lead to altered sexual 
function.  Luboshitzky and colleagues compared 
both patients with OSAS and healthy men to 
measure night LH and testosterone. Patients with 
OSAS showed a significant reduction in nocturnal 
(LH) and testosterone.(53) The degree of OSAS 
confers risk of erectile dysfunction.  In one study, a 
total of 15% of those with an RDI of 29.5, and 40% 
of those with RDI of 67, had the diagnosis of 
erectile dysfunction. It was also found that 
approximately 75% of the patients had improved 
sexual function with nasal CPAP treatment.(54) 
Patients with OSAS develop increased atrial 
naturetic peptide (ANP) levels. Krieger and 
colleagues measured ANP and noted elevated 

sleep ANP and reduction in response to 
application of nasal CPAP.(55) A recent study of 
elderly men and women again revealed elevated 
ANP and increased nocturnal urine volume.(56) 
More severe RDI associated with greater nighttime 
urine volumes.  There are number of studies 
implicate changes in the leptin, ghrelin, and 
insulin hormones and the OSAS. However, there is 
much less data linking them narcolepsy or RLS.(57-

62) 

CARDIOVASCULAR SYSTEM AND SLEEP 
During sleep, there are changes in autonomic 
nervous system that play a pivotal role in the 
control of cardiovascular system functions.  
During non-REM sleep, there is a drop in 
sympathetic nervous activity and an increase in 
parasympathetic activity. During REM sleep, 
parasympathetic activity decreases and 
sympathetic activity may increase. There are 
several cardiovascular conditions suggesting that 
they may be caused by a sleep breathing disorder.   
Pregnancy induced hypertension, or preeclampsia, 
has been linked to snoring and possibly to OSA.(63-

65) Pregnant women with preeclampsia (i.e., 
hypertension and proteinuria) should be 
evaluated for the possibility that they may have a 
sleep breathing disorder.  Arterial hypertension 
that is resistant to therapy has been linked to 
untreated OSA.(66) These patients should be 
evaluated for the possibility of a sleep breathing 
disorder.  About 50% of people who have had a 
stroke have sleep apnea.(67) In some patients, 
nocturnal ischemia is related to OSA.(68) Right and 
left cardiac failure and bradyarrhythmias may be 
manifestations of sleep breathing disorders.(69) 
Patients with heart failure (with or without OSA) 
may not manifest the degree of sleepiness and 
generally have a lower Epworth sleepiness scale 
score compared to that is seen in typical OSA.  
Therefore, the absence of subjective sleepiness 
cannot exclude sleep apnea in patients with heart 
failure.(70) The unexpected results of the CANPAP 
study reinforce the fact that well-designed clinical 
trials need to be performed to evaluate the effects 
of treatment of sleep breathing disorders in heart 
failure patients.(71)   
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ELDERLY AND SLEEP 
Sleep deteriorates with age.(72) The Sleep Heart 
Health Study (SHHS) investigators analyzed sleep 
staging from 2,685 individuals aged 37 to 92 years 
who did not use psychotropic drugs or large 
amounts of alcohol, and who did not have restless 
legs syndrome (RLS) or systemic pain. However, 
some of the included individuals did have 
cardiovascular disease, sleep apnea, or chronic 
pulmonary conditions.  The data is remarkable for 
the sex differences in the deterioration of sleep.  
The percentage of SWS fell from 11.2% to 5.5% for 
men as they went from the 37-54 age group to the 
over-70 age group.  The percentage of SWS for 
women increased from 14.2% to 17.2%.  The 
authors did not find much change in REM sleep 
for either sex, with the percentage of REM in men 
falling from 19.5% in those aged 13 to 54 years old, 
to 17.8% in those over 70 years. For women, the 
REM falling from 20.9% to 18.8% in those from the 
lower to the higher age group.  This study 
confirmed a decline in sleep efficiency for both 
sexes (from 85.7 to 79.2%) when comparing the 
youngest and oldest groups.  There was an 
increase in the number of arousals, decreased K 
complex and decreased spindle density with 
aging.  In addition, they found that the 
Respiratory Disturbance Index was a better 
predictor of arousals than was age or sex.  The 
Respiratory Disturbance Index was associated 
with reduced REM sleep in both sexes, and with 
reduced SWS in men.  It should be noted that the 
investigators used a 75 micro-volt amplitude 
criterion for SWS. Although women are more 
likely to complain of sleep difficulty than are men, 
their sleep quality in general is better preserved 
than that of men.(73) Both sleep apnea and RLS 
increase in prevalence with age.(74,75) 

THE FUTURE 
Sleep medicine is expanding and attracting more 
and more attention from physicians and scientists.  
We now know that sleep is an active and dynamic 
state that greatly influences our waking hours, and 
we realize that we must understand sleep to fully 
understand the brain.  Innovative techniques such 
as actigraphy and polysomnography are helping 

us to diagnose and manage different sleep 
disorders.  Understanding the factors that affect 
sleep in health and disease are assisting us to 
develop new therapies for different sleep 
disorders and to overcome jet lag, shift work, and 
insomnia associated problems.  We can expect 
many benefits from research that will allow us to 
understand sleep's impact on our lives. 
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